Multi-functional RF coils for 7T MRI based on 1D/2D electromagnetic metamaterial engineering

Daniel Erni, Andreas Rennings, Jan Taro Svejda, Benedikt Sievert, Zhichao Chen, Thorsten Liebig, and Jürg Fröhlich

General and Theoretical Electrical Engineering (ATE), Department of Electrical Engineering and Information Technology, Faculty of Engineering, University of Duisburg-Essen, D-4748 Duisburg, Germany

www.ate.uni-due.de

(1) Visiting Scientist, Fields at Work GmbH, CH-8006 Zurich, Switzerland.

Agenda

- 1D EM Metamaterials – CRLH «MetaLines»:
 – ZOR coil elements
 – dual-resonant coil elements
 – traveling-wave coil system «MetaBore»

- 2D EM Metamaterials – HIS «MetaSurfaces»:
 – elongated dipole elements on HIS ground plane
 – 8-channel HIS coil system
1D EM Metamaterials I
Tailoring transmission lines
(1) Design of CRLH* MetaLines:

(2) zeroth-order resonance (ZOR):

(3) standing wave resonance (λ-wave):

1D EM Metamaterials II
First multi-channel ZOR coil

- CRLH Metaline with coaxial stub lines as parallel inductors.
- short terminations yield a pronounced series resonance → uniform J_r over 40cm!
- Performance: FoM: \(|\mathbf{B}|^2 \frac{I_{\text{max}}}{\sqrt{\text{SAR}_{\text{max}}}} = -2.6 \text{ dB} \); decoupling: \(S_{ij} \leq -30 \text{ dB} \); \(\text{SAR}_{100} \sim 70\% \) of MSL dipole
1D EM Metamaterials III

Dual-resonant coils for $^{23}\text{Na} / ^{1}\text{H}$ high-field MRI

1. Composite right-left-handed (CRLH) MetaLine
 - multi-layer topology
 - $\lambda/4$ resonance
 - excitation of $^{23}\text{Na} / ^{1}\text{H}$

 ^{1}H: $f_h = 298\text{ MHz}$

 ^{23}Na: $f_h = 79\text{ MHz}$

 $\lambda/4$ resonant coil element consisting of a 3 section meta-line

2. RF magnetic fields
 - simulations vs. near-field measurements (i.e. near-field probing)
 - cylindrical phantom for validation purposes
1D EM Metamaterials V

Dual-resonant coils for $^{23}\text{Na}/^1\text{H}$ high-field MRI

(3) Verification within a functional MRI scan

- There is an apparent selectivity between hydrogen and sodium images.
- Hydrogen images: reproduce the ping-pong ball insets due to the high SNR.
- Sodium images: are much less selective due to the low SNR (\rightarrow increase Q_{unload} @ 79 MHz).
- Sodium images are inhomogeneous due to the standing-wave nature of the quarter-wave resonance (in conjunction with the low SNR).

BTSL phantom with filled ping-pong ball insets (NaCl solution or NaCl agar mixtures)

Sodium images @ 79 MHz (still low SNR)

Hydrogen images @ 298 MHz (high SNR)

1D EM Metamaterials VI

Dual-resonant coils for $^{23}\text{Na}/^1\text{H}$ high-field MRI

(3) Verification within a functional MRI scan
1D EM Metamaterials VII

Traveling-wave MRI

(1) Excitation concept (298 MHz):
- uniform \(B_1 \) field along \(z \)
- unidirectional \(TE_{11} \) wave
- circularly polarized

(2) Excitation antennas:
(simplified for linear polarization)
- conventional approach:
- ergonomic approach:
 (circumferential full \(\lambda \) wave resonance, quadrature excitation of circularly polarized fundamental \(TE_{11} \) mode).

© D. Brunner, ETH Zürich.

1D EM Metamaterials VIII

Traveling-wave MRI excitation scheme

The «MetaBore» concept:
- Multiple MTM ring antennas
- Similar to active 2D EM MTM
- Optimizing current excitations
- Namely amplitudes & phases
- Sets up an inverse problem

\[
\begin{align*}
\bar{J}_1(\omega) + \bar{J}_1(\omega - \frac{\pi}{3}) \\
\bar{J}_2(\omega) + \bar{J}_2(\omega - \frac{\pi}{3}) \\
\bar{J}_3(\omega) + \bar{J}_3(\omega - \frac{\pi}{3}) \\
\bar{J}_4(\omega) + \bar{J}_4(\omega - \frac{\pi}{3})
\end{align*}
\]
The «MetaBore» Concept I

Test case: «Larynx illumination»

(1) Profiling scenario for confined illumination:
(while solving an inverse problem)
(c) total B_1 field

- 18 continuous circular current strips
 (width: 1 cm / pitch: 15 cm / ϕ: 64 cm).
- Gaussian profile: FWHM = 15 cm

(a) current excitation amplitudes
(b) current excitation phases

The «MetaBore» Concept II

Test case: «Larynx illumination»

(2) Field amplitudes constituting the illumination profile:

- Virtually purely circularly polarized B-fields ($B_1^{(+)}$).
- Undesired component $B_1^{(-)}$ is suppressed by 21dB.
- Conforms perfectly to the target profile.
- Achieved field confinement (FWHM = 15 cm) is much below the wavelength of the TE_{11} waveguide mode (2.6 m ... 3.5 m).
- No hotspots in the neck-shoulder region.
2D EM Metamaterials I

High Impedance Surfaces (HIS)

(1) Operation principle of the HIS shield:

- PEC: induced out-of-phase currents \(\rightarrow \) reduction of \(B_1 \)
- HIS: suppression of induced currents (only in-phase residuals)
- the HIS behaves similar to a PMC

(2) Comparison of \(B_1 \) field distributions (simulation):

(3) Potential HIS structures:

2D EM Metamaterials II

Uni-planar HIS surface

(1) Topology and frequency responses:

- the uni-planar HIS surface has a smaller reflection bandwidth compared to the mushroom HIS, but is much easier to fabricate (no vias).
- multilayer HIS \(\rightarrow \) additional DoFs, smaller unit cell
2D EM Metamaterials III

Dipole-based RF coil element

(2) HIS shielded dipole coil element:

(3) Elongated dielectric-loaded dipole:

- Transversal flux profile broadening: 40%
- Peak flux enhancement: $1.4\% \ (d = 20 \text{ mm})$
- $26\% \ (d = 5 \text{ mm})$

(1) Elongated dielectrically-loaded dipole:

- Meander: geometrical compression/masking of the decreasing current distribution at the dipole end.
- Dielectric: increases the electrical length of the meander.

2D EM Metamaterials IV

8-channel HIS dipole coil

(1) Simulations: (normalized IB_1 field)

(2) Measurements: (normalized IB_1 field)
2D EM Metamaterials V

Coupling in 8-ch dipole coils

(2) 8-Channel HIS dipole coils – coupling:

- **Measurement**: the HIS coil system shows the expected higher overall coupling compared to the PEC coil system.
- **Measurement**: the HIS coil system shows a 3dB stronger nearest neighbor element coupling compared to the PEC coil system (HIS: –13dB, PEC: –16dB).

(1) 8-Channel HIS dipole coils – Flip-angle images:

Summary

- **Functionalizing CRLH MetaLines:**
 - zeroth-order resonance (ZOR) that aims at
 - large uniform, longitudinal field-of-views (FoVs)
 - whole-body MRI
 - lower peak electrical field E_{max} and peak SAR.
 - standing-wave resonances of tailored extent (i.e. wavelength λ via dispersion engineering).
 - intrinsic dual-band features for combined sodium/proton MRI.

- **Functionalizing HIS MetaSurfaces:**
 - HIS: suppression of image currents,
 - Dipole (PEC → HIS): $\Delta I_{\text{avg}} = +20\%$; $\Delta \text{CoV} = -18\%$
 - 8-ch (PEC → HIS): $\Delta I_{\text{avg}} = +10\%$; $\Delta \text{CoV} = -13\%$
 - azimuthal homogenization, better field penetration, but: higher cross-coupling.

- **Future work:**
 - exploring multi-band MetaLine-based coil elements (^1H, ^{19}F, ^{23}Na, ^{31}P).
 - Leaky-wave antenna-based broadband coil elements.
That’s all – Thanks. www.ate.uni-due.de

Dr.-Ing. Andreas Rennings
- project leader MRI
- EM Metamaterials for high-field MRI

Dr.-Ing. Jan Taro Svejda
- scientist, MRI research
- dual-band metamaterial coils for X-nuclei MRI

B.Sc. Benedikt Sievert
- M.Sc./Ph.D. student
- optimization of high-impedance surfaces (HIS)

Dr.-Ing. Zhichao Chen
- former Ph.D. student
- elongated dipole elements over metamaterial ground planes, 8-channel coils

Dipl.-Ing. Thorsten Liebig
- Ph.D. student
- MetaBore concept for traveling-wave MRI, openEMS (3D-EC-FDTD)

Dr. sc. techn. Jürg Fröhlich
- visiting scientist, Fields at Work GmbH, ETH Zürich
- has pioneered the traveling-wave MRI approach