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ABSTRACT 

The main goal of this paper is to present thorough investigations for the metallic nanoshelled structures with rigorous 
electromagnetic analysis. Two metallic nanoshelled structures are investigated; namely, single nano-shelled cylinder, and 
nano-shelled photonic crystals. A rigorous Maxwell’s equations solver is used to get insights into the optical properties of 
the structures. Our numerical simulations show that it is difficult to shift the plasmon resonance to long wavelength (e.g. 
towards ten micrometers) in such a structure. Flat bands are found in the metallic nanoshelled photonic crystals when the 
lattice constants are much smaller than the operating wavelength. This would become interesting especially for realizing 
ultra-compact slow wave structures such as plasmonic devices with low group velocity. Several applications using 
nano-shelled particles as sensors, as substrates for surface enhanced Raman spectroscopy are also discussed in the paper. 
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I. INTRODUCTION 

Metal nanoparticles offer an advantage over other systems because their optical constants resemble those of the bulk 
metal to exceedingly small dimensions [1]. Because of this, it is believed that metallic nanoparticles are prone to become 
building blocks of future new optoelectronic devices [2], followed by the requirements of miniaturization of devices. 
Among those metal nanoparticles, metallic nanoshelled structures are of particular interest due to their wide tunable 
ranges of surface plasmon resonances, resulting in applications such as surface plasmon resonance sensing [3, 4, 5, 6], 
surface enhanced Raman scattering (SERS) [5, 7, 8, 9, 10], Tip-Enhanced Raman Scattering (TERS) [11] and novel 
plasmonic devices [12, 13, 14]. Moreover, the plasmonic properties allow for the development of fundamentally new 
metal-based sub-wavelength optical elements [e.g., mirrors, beam-splitters, interferometers, plasmon-enhanced LED etc.] 
with great potential [11, 15]. Now, with the development of modern nano-fabrication technology, metallic nano-shelled 
structures can be easily synthesized and chemically modified.  
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Since the dimensions of nanoparticles are typically at the order of nanometers, the ratio of the surface area to the 
associated particle volume become much larger than their bulk counterparts. As a consequence, the physical and 
chemical properties of the structures can be dramatically changed. Therefore, the surface effect and volume effect then 
become more prominent and important for nanoparticles. In order to implement functionality in such nanoscale 
dimensions, one must take all these effects into account when modeling the structural behavior of nanoparticles.  
Currently, theoretical studies on metallic nanoshelled structures are focusing on the linear optical properties [16] and 
numerous experiments have already been carried out [17]. Despite the large empirical basis, the challenge of numerical 
simulation is still present because of the limitations of the computational methods and the available computer sources. 
The applications [i.e., plasmon resonance sensing, SERS etc.] shown above are very sensitive to the electromagnetic 
fields at or near the particle surfaces, thus providing new challenges to the development of accurate numerical methods. 
In this work, we focus on the nanostructure formed by the metallic shell with a cylindrical dielectric core confined within 
a host medium. We then calculated the extinction spectra of the structure using a rigorous two-dimensional (2D) 
Maxwell’s equations solver. The tunability of plasmon resonances is studied and a promising structure made by 
nanoshelled rods is proposed here, in the framework of a metallic nanoshelled photonic crystals. This work shows that 
the plasma frequencies can be extensively engineered when using shelled structures within a dielectric host. We also 
consider in particular via numerical simulations how the plasma frequencies can be shifted. This is demonstrated along 
the most demanding part of this work namely the computation of the full band diagram for the metallic photonic crystal 
structures are also given. 

II. NUMERICAL METHODS 

Although the large number of methodologies available for solving Maxwell’s equations, there are, however, some 
important challenges associated with metal nanoparticles that limit the applicability of methods used to study problems 
with much longer wavelengths than the structural length scales. Briefly speaking, for nanoparticles, Maxwell’s equations 
are no longer invariant to scaling of both the wavelength and structure size, because of the large material dispersion that 
is even emphasized in the framework of such small particle dimensions. 
For the nanoshelled structures with high symmetry (i.e., for spherical structures), Mie’s theory can provide 
comprehensive analytical descriptions of both of near field and far field behaviors [18]. As soon as the structural 
symmetry is reduced, it is no longer possible to obtain closed-form solutions to Maxwell’s equations. Therefore, a great 
deal of effort has been put into the development of numerical methods in order to tackle metallic nanostructures. Some 
representative methods are the Discrete Dipole Approximation (DDA) [19], the Multiple Multipole methods (MMP) [20], 
and other more general electromagnetic field solvers like the Finite Difference Time Domain (FDTD) [21] and the Finite 
Element Methods (FEM) [22].  
The MMP method that has been used throughout our work is based on Mie-Vekua theory [23], which is essentially close 
to the analytic solutions to Maxwell’s equations. When dealing with nanoparticles, the particle is divided into domains 
with shapes that allow for series expansion solutions of Maxwell’s equations. The coefficients in these expansions are 
then determined by matching boundary conditions at the domain interface, where the least squares are used for 
minimizing the matching errors at the boundary. So the resulting solutions are exact within each domain but approximate 
at the boundaries. One important issue here is that the material parameters for small nanoparticles (i.e., less than 5nm) 
need to be modified in order to correctly model the size and boundary effect. Usually, the optical dispersion of metal can 

Proc. of SPIE Vol. 6717  67170O-2



 

 

be described by a simple Drude model 

  
ε(ω ) = ε0[1−

ω p
2

ω (ω + iγ )
]                                        (1) 

Where ε0 is the permittivity of free space, and ωp is the plasma frequency of metal, γ is the damping frequency. However, 
we have to note that this Drude model shown in (1) was valid for bulk materials when the interband transition effects and 
dephasing due to electron surface scattering can be neglected. For small particles, these effects are revealed by the 
damping factor γ with a term dependent on the local plasmon-system geometry [24].  

  
γ f = γ + 2v f / d                                                 (2) 

γf is the modified damping frequency for small particle; vf is the Fermi velocity [25] and d is the particle diameter. In 
some cases, in order to describe an intraband transition, the Lorentz oscillator model was used [26]. More precise 
dielectric models can be obtained through combining Drude and Lorentz model by considering the dielectric response 
when it is above the threshold of the resonant interband electronic transitions [18]. Finally, the dielectric function for the 
metal is obtained by fitting the combined Drude model in equation (1) and (2) to the experimental data reported by 
Johnson and Christy [27] on bulk metal. A more sophisticated approach to fit the measured data to the Drude-like model 
can be found in [28], where a symbolic regression procedure iterated with the generalized genetic programming was 
employed and without taking care of further physical limitations. 

III. SIMULATION RESULTS AND DISCUSSION 

In this simulation work, we focus on two structures: the nanoshelled cylinder, and the metallic nanoshelled photonic 
crystal. Corresponding properties are also partially investigated in the following subsections. 

3.1 Nanoshelled cylinder 

The first structure we consider here is the single nanoshell cylinder, which consists of a cylindrical dielectric core with 
radius r1 and a metallic shell with radius r2 in a suspending medium with the permittivity ε0. The permittivity of the 
dielectric core is ε1 and the complex permittivity of the metallic shell is ε2. The electric field distribution in each of the 
three regions could be obtained analytically within the electrostatic approximation by the solution of Laplace’s equation 
with the corresponding boundary conditions [2]. It is well known from analytical expressions that the fields in the core, 
shell and suspending medium are position dependent and the resonances are governed by the combination of the material 
dispersion and the geometrical parameters. Study shows that the resonances in metallic shelled structures have a much 
larger tuning range than the metallic core model [26]. We are thus investigating the resonances in the structure.  
In the nanoshelled cylindrical structure, the resonance can be tuned by adjusting the shell thickness ∆r = r2-r1, the 
material parameters ε1, ε2, ε3 simultaneously or just simply changing one of the parameters at one time. The resonance 
frequencies can be obtained numerically by calculating either the absorption, the scattering cross section or – as shown 
e.g. in Figure 1 – the extinction efficiency of the structure over the frequency range of interest. The frequencies 
corresponding to the peak values in the obtained curves are assigned as the resonance frequencies labeling a resonance 
condition where the electric field on the particle’s surface is strongly enhanced. 
 

Proc. of SPIE Vol. 6717  67170O-3



I Ag-shelled nano cylinder

C0
0C
w

—u—s 2.25
—•—s 4.0

—A—s =6.0
V-s8.0

—4—s =10.0

2.Ox10
-

3.OxlO 4.OxlO
-

Wavelength (m)

5010.6 0.6

 

 

 
(a) 

 

         
 

(b)                                  (c) 
 

Fig.1: (a) Calculated plasmon resonance spectra for different core materials on a silver shell of 4.5nm thickness; (b) H-field 

distribution at the wavelength of 3.42µm (showing the aforementioned dipole nature) and (c) H-field distribution at the 

wavelength of 2.28µm (showing the aforementioned multipole nature) when the permittivity of the core material is 6.0. 

Note that the bright color in the figures (b) and (c) indicates high field values. 
 
To get a first impression of the material selection, we calculated the extinction spectra of the structure with different 
dielectric core materials, while the geometry parameters r1, r2 are fixed. Figure 1 shows the calculated plasmon 
resonance spectra for particles with silver coating and different core materials. The radius of the core r1 is 258 nm and the 
thickness of the shell is 4.5 nm (r2 = 262.5 nm). As depicted in Figure 1 (a) the plasmon resonance is red-shifted when 
the permittivity of the dielectric core is increased, while the quality factor of the resonance peak decreases. There are two 
or even more resonance peaks within the wavelength range of interest. It is believed that these peaks originate from 
different orders, such as dipole or multipoles resonances. We then checked the field distributions associated to the 
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corresponding resonances: At short wavelength, a multipole behavior is clearly observed; while at long wavelength, the 
dipole behavior is dominant, as shown in Fig. 1(b) and Fig. 1(c). This can be explained by the fact that a nanoparticle, 
which is much smaller than the wavelength will at first respond as a dipole to the impinging optical field [29]. More 
complex distributions arise then from the interplay between the light field and the plasmonic material response. 

 

 
 

Fig.2: Calculated plasmon resonance spectra for different core materials for a gold shell of 4.5nm thickness. 
 
Among the noble metals, silver is best known to have one amongst the shortest plasma wavelengths [27]. Typically, the 
plasmon wavelength for silver particle is in ultraviolet therefore it is often used for short wavelength operation like 
SERS in blue light region at 488nm [11]. While in some occasions, i.e., the SERS application in red or near infrared, the 
metal with longer plasma wavelength (like gold) is preferred. In Figure 2 the resonance behavior is shown for a 
gold-coated nanocylinder with the same core material. The resonance becomes broader and the quality factor is lower 
than those of silver indicating a larger absorption in the particle. Moreover, the resonance peak even becomes almost 
indistinguishable when the core material exhibits a large permittivity. Unfortunately this also holds for long wavelengths 
when the core material has a significantly lower permittivity, unveiling the structural limitations of the device when a 
long wavelength plasmon resonance is desired.  
Besides the material properties of the shell and the core, the thickness of the metallic shell is another crucial factor that 
determines the optical properties of the structures. The plasma resonance is red shifted with the decreasing shell 
thickness (at fixed the core materials and diameters). Surprisingly, the plasmon resonance can be tuned to extraordinary 
large wavelengths up to 7.5µm while the shell thickness is approaching a value of 0.3nm as shown in Figure 3. This is to 
our best knowledge the largest wavelength ever predicted numerically for metallic optical nanocylinders so far. A further 
study shows that when the material properties are fixed, the resonance wavelength mainly depends on the core/shell ratio 
r1/∆r, where the resonance wavelength grows with the increasing core/shell ratio. This is also in accordance with the 
theoretical predictions for gold-shelled spherical nanoparticles [17]. 
It is worth noting that all these materials usually exhibit complex permittivities, leading resonance conditions for the 
overall structure which are more complicate to retrieve. Since the metallic part still plays important roles on the optical 
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response, the general design rules still hold for nano-shelled cylinders. Structures with nonlinear material properties 
define an interesting topic of its own and will certainly merit some future research. 
  

 

 
Fig.3: Calculated plasmon resonance spectra for different Ag shell thicknesses. 

 

3.2 Photonic crystals with metal-shelled cylinders 

Photonic crystals (PhCs) are artificial materials, which consist of at least two materials exhibiting a high index contrast 
that are periodically arranged on certain lattices. Because of the periodicity of the structure, the electromagnetic wave is 
modulated within such structures, resulting in new optical phenomena based on the presence of a photonic band gap 
(PBG) [30]. What makes PhCs most attractive in optics is the fact that no light may penetrate a PhC at wavelengths 
within the PBG. For metallic photonic crystals (MPhCs), novel applications have been found to form negative index 
materials at radio frequencies [31] and to enhance the nonlinear optical properties at optical frequencies [32]. In 
particular, the emergence of flat bands in the MPhC’s band diagram and tackling these operating frequencies by efficient 
numerical methods are of particular interest because slow wave phenomena may become crucial in the context of both 
functionality and integration density for future nanophotonic devices. 
Referring to the wide tuning range of the resonance wavelengths in the metal–shelled structure, we will study its impact 
on the band diagram of the MPhCs made of metallic shelled cylinders. To observe the surface plasmon resonance 
behaviors in MPhCs, certain configurations should be adopted, i.e., the H-polarization has to be used where the magnetic 
field is parallel to the axis of the cylinders. The metallic nanoshelled cylinders are arranged on a 2D square lattice with 
lattice constant a =750 nm and the background material is air. For the nanoshelled cylinder, the radius of the core r1 is 
225nm, and the shell thickness is 37.5nm (r1/a = 0.30, r2/a = 0.35). Figure 4 shows the calculated band diagram for the 
MPhC structure. In accordance with our previous research [33, 34], there are no flat bands appear in the PBG when 
silver is used as coating material. To a first intention one may question the calculations because previous numerical 
investigations had already demonstrated the existence of flat bands in such MPhC structures [35]. The fact is that mostly 
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idealized models for metals are used reproducing unrealistic low loss figures, which does not agree with the measured 
data for metallic materials [35].  
 

 
 

Fig.4: Band diagram (H-polarization) for the PhCs with metallic (Ag) nanoshelled cylinders. The coated cylinders with core 

radius of 225nm and shell thickness of 37.5nm are arranged on a square lattice with lattice constant a = 750nm. 

 
Intensive numerical investigations have shown that for most of the metals, no matter whether measured data or realistic 
Drude-like fitting models are used, no flat band will appear in the structure if the lattice constant is comparable to the 
operating wavelength. This can be assigned to the material losses in the MPhC structures where the modes are already 
attenuated along such characteristic length scale. However, the surface plasmon behaviors are still observable in the 
structure as displayed in Figure 5 by the field distribution of the MPhC lattice’s eigenmodes. 
The recently demonstrated plasmonic waveguide devices are mainly based on linear arrays of coupled metallic particles 
[36]. As we know, light can propagate in such structure mainly because of surface plasmon resonances and the strong 
coupling associated between nanoparticles. (Note that the propagation length in such plasmonic waveguide is also 
limited by the losses in the metal). Referring to the plasmonic waveguide and a new idea then comes up for the MPhCs: 

 

 
Fig.5: The H-field distribution of the fourth order eigenmode located at the Γ point in the first Brillouin zone for the MPhC under 

investigation.  
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Fig.6: Band diagram (H-polarization) for a PhC with metallic (Ag) nanoshelled cylinders arranged on a square lattice with lattice 

constant a = 75nm. The core radius of the coated cylinder is 25.8nm and the shell thickness is 0.55nm. Note that this 

diagram is not complete: infinitely many additional higher modes may be found near the reduced frequency fa/c ~ 0, where 

the resonance condition is also satisfied. 
 

 

 
Fig.7: The H-field distribution of the fourth eigenmode located at Γ point in the first Brillouin zone in the MPhC with a = 75nm.  

 
In the MPhCs, if the cylinders are put more closely, then the lattice constant is reduced to much less than the operating 
wavelength. As a result of the strong interaction the coupling between cylinders is therefore enhanced. In addition, the 
reduced metallic volume in the nanoshelled cylindrical MPhC also means a substantial reduction in material losses, 
which could enhance the mode propagation in the structure as well. In order to test the idea, the lattice constant a of the 
underlying structure shown in Fig.4 are shrinked by a factor of ten (a = 75nm) and the band structure is then recalculated 
(for H-polarization). The core radius r1 is selected as 25.8 nm and with the shell thickness 0.55nm. The calculated band 
diagram is shown in Fig.6 and we can see that the flat bands appeared in the structure as we expected. This means that in 
the metal-shelled MPhCs, the flat bands are possible when the lattice constant of the MPhCs is selected to be much less 
than the operating wavelength while keeping the metallic volume as small as possible. It can be explained as that the flat 
bands in the metal-shelled MPhCs originate from the surface plasmon resonances, and the mode energy transport in the 
structure relies on near field coupling between surface plasmon modes of neighboring particles [36]. This would make 
sense because the flat band modes in MPhCs are associated with low group velocities, which have already discharged 
into very interesting applications [37]. Accordingly, the surface plasmon behaviors are verified by examining the 
eigenfield of the modes in certain lattices as shown in Fig.7. The displayed mode patterns indicate that the interaction 
between neighboring nanoparticles can produce mixing and splitting of these dipolar modes. Typically, this type of 
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hybridization of the plasmon excitations is essentially the result of a strong coupling of plasmon states in the inner and 
outer metal shells and it appears to be very sensitive to the thickness of the separating dielectric layer. Then the 
metal-shelled MPhC structure should be carefully designed and optimized to obtain corresponding optical responses. 
In fact, because of the strong coupling between nanoparticles, the structure we calculated here can be used where locally 
strong fields are desirable. One possible application of the structure is the substrate of SERS, where the molecules under 
detected are put at the locations where the field is stronger for some specific wavelength. Our calculation reveals that 
field enhancement factors larger than 100 are possible under resonance condition. 

IV. CONCLUSIONS 

We have applied a rigorous analysis to investigate both single metallic nanoshelled cylinder in the vacuum, and the 
MPhC structure made by the metallic nanoshelled cylinder arranged on a square lattice and embedded in air as 
background medium. An accurate material model was used to explore the aforementioned nanostructures. Plasmon 
wavelengths larger than 8µm are predicted via numerical simulation for cylindrical nanoshell structure. We have shown 
that the plasmons exhibited by the metallic nanoparticles could hybridize in a photonic crystal setting when the particles 
are close enough to each other, and this produces new plasmon-like modes whose frequency can be tuned by changing 
the lattice constant and the metallic shell thickness. In the case of MPhCs, we verified this by computing the band 
structure of the MPhCs for lattice constants much less than the operating wavelength. The emergent flat bands in such 
MPhCs suggests potential applications e.g. for sensing based on changes in the plasmon frequency with small variations 
in the structure or the environment. Enhanced sensitivities are expected here because of the high amount of surfaces in 
the MPhC topology in conjunction with light fields that are confined just to those surfaces. 
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